Арифметика: различия между версиями

Материал из ChronoWiki
Перейти к навигацииПерейти к поиску
(о формализме)
м (Место арифметики в науке)
Строка 29: Строка 29:
 
* ''Каспаром Весселем'' (''Caspar Wessel'', 08.06.[[1745]]–25.03.[[1818]]), ''Жаном Робером Арганом'' (''Jean-Robert Argand'', 18.07.[[1768]]–13.08.[[1822]]) и ''Карлом Фридрихом Иоганном Гауссом'' (''Johann Carl Friedrich Gauß'', 30.04.[[1777]]–23.02.[[1855]]) — комплексные числа.
 
* ''Каспаром Весселем'' (''Caspar Wessel'', 08.06.[[1745]]–25.03.[[1818]]), ''Жаном Робером Арганом'' (''Jean-Robert Argand'', 18.07.[[1768]]–13.08.[[1822]]) и ''Карлом Фридрихом Иоганном Гауссом'' (''Johann Carl Friedrich Gauß'', 30.04.[[1777]]–23.02.[[1855]]) — комплексные числа.
  
На непротиворечивость арифметики вещественных чисел опирается непротиворечивость [[Геометрия|геометрии]] ''[[Евклид]]а'', а на последнюю — непротиворечивость геометрии [[Лобачевский, Николай Александрович|''Лобачевского'']]. Вместе с тем, согласно результату ''Курта Гёделя'' (''Kurt Friedrich Gödel'', 28.04.[[1906]]–14.01.[[1978]]) [[1931]] года, непротиворечивость «формальной арифметики», формализующей элементарную теорию чисел, недоказуема в этой системе.
+
На непротиворечивость арифметики вещественных чисел опирается непротиворечивость [[Геометрия|геометрии]] ''[[Евклид]]а'', а на последнюю — непротиворечивость геометрии [[Лобачевский, Николай Иванович|''Лобачевского'']]. Вместе с тем, согласно результату ''Курта Гёделя'' (''Kurt Friedrich Gödel'', 28.04.[[1906]]–14.01.[[1978]]) [[1931]] года, непротиворечивость «формальной арифметики», формализующей элементарную теорию чисел, недоказуема в этой системе.
  
 
=== Знаменитые арифметические задачи ===
 
=== Знаменитые арифметические задачи ===

Версия 15:51, 29 марта 2011

Аллегория Бернардино Пинтуриккьо «Aridmetrica» (149296), апартаменты Борджа в Ватикане

Арифметика — наука о числах, одна из древнейших математических дисциплин, первая из «свободных искусств» средневекового квадривиума

«'Αριθμον, ἒξοχον σοφισματων»
(«Изобрёл для них науку чисел, из наук важнейшую» Эсхил «Прометей прикованный»)

Происхождение термина

Общепринято мнение, что термин «арифметика» происходит из греческих слов:

  • αριθμεω — считать, платить
  • αριθμητικος — относящийся к счёту, умеющий считать
  • αριθμητικη — арифметика, искусство или умение считать

Античные легенды сообщают, что люди обучились этому искусству от титана Прометея. Первыми мастерами арифметики считались халдеи, египтяне и евреи, которые использовали арифметику в гадательных целях, а затем это искусство перешло к грекам, начиная с Пифагора, которые сделали из него абстрактную науку.

Иосиф Флавий в «Иудейских древностях» сообщает, что египтяне ознакомились с арифметикой через Авраама, а потом она распространилась и к грекам:

«Затем он преподал им арифметику и сообщил сведения по астрономии, в которых египтяне до прибытия Авраама были совершенно несведущи. Таким образом эти науки перешли от халдеев в Египет, а оттуда уже и к грекам.» ([3, ИД, 1:8])

Между прочим «Иудейская война», приписываемая тому же Иосифу Флавию в своём древнерусском варианте содержит «задачу Иосифа Флавия», относящуюся к разделу «увеселительной арифметики». Праотец Авраам считается автором первой книги каббалистического канона «Сефер Йецира» (Книга Творения), в которой излагаются начала гадательной арифметики (арифмомантии).

Греческие писатели Платон и Диоген Лаэртский, а также академик РАН В.И. Арнольд приписывают создание арифметики египетскому богу Тоту, а греческий географ Страбон — финикийцам.

Место арифметики в науке

Согласно современному определению:

«Арифметика — область знаний о числах и операциях в числовых множествах.» ([6, т. 1, стб. 314])

Свойства операций над числами является предметом алгебры, а свойства самих чисел — теории чисел.

Аксиоматическое обоснование арифметики было завершено к концу XIX века, работами Рихарда Юлиуса Вильгельма Дедекинда (Richard Dedekind, 6.10.1831–12.2.1916) и Джузеппе Пеано (Giuseppe Peano, 27.8.1858–20.4.1932).

Арифметика чисел разного типа была обоснована:

  • Карлом Теодором Вильгельмом Вейерштрассом (Karl Theodor Wilhelm Weierstraß, 31.10.1815–19.02.1897) — рациональные и вещественные числа;
  • Георгом Кантором (Georg Ferdinand Ludwig Philipp Cantor, 03.03.1845–06.01.1918) — вещественные числа;
  • Каспаром Весселем (Caspar Wessel, 08.06.1745–25.03.1818), Жаном Робером Арганом (Jean-Robert Argand, 18.07.1768–13.08.1822) и Карлом Фридрихом Иоганном Гауссом (Johann Carl Friedrich Gauß, 30.04.1777–23.02.1855) — комплексные числа.

На непротиворечивость арифметики вещественных чисел опирается непротиворечивость геометрии Евклида, а на последнюю — непротиворечивость геометрии Лобачевского. Вместе с тем, согласно результату Курта Гёделя (Kurt Friedrich Gödel, 28.04.1906–14.01.1978) 1931 года, непротиворечивость «формальной арифметики», формализующей элементарную теорию чисел, недоказуема в этой системе.

Знаменитые арифметические задачи

Первые издания древних арифметических книг и текстов

Арифметике посвящены 7, 8 и 9 книги «Начал» Евклида: здесь излагаются алгоритм отыскания наибольшего общего делителя («алгоритм Евклида»), теоремы о простых числах, обосновываются коммутативность и дистрибутивность умножения натуральных чисел.

В «Арифметике» Диофанта излагаются правила действий со степенями, действия с отрицательными числами, используется нуль.

В «Трактате об искусстве счёта» Сакробоско содержится описание действий с натуральными числами: сложения, вычитания, умножения, деления пополам, извлечения корня, используется нуль.

  • «Opus elementorum Euclidis Megarensis in geometriam artem, in id quoque Campani commentationes» (Венеция, 25 мая 1482 г.) — первое печатное издание Евклида Эргарда Ратдольта, считающееся переводом Дж. Кампануса «Начал» с арабского языка
  • «Tractatus de arte numerandi, Algorismus domini Joannis de Sacro Bosco» — пособие по арифметике Сакробоско, опубликовано в Страссбурге в 1488 году
  • «Diophanti Alexandrini rerum arithmeticarum libri sex» (Basileae, 1575) — первое печатное издание Диофанта выполненное Вильгельмом Гольцманом (Ксиландром)
  • «Scritti di Leonardo Pisano mathematico del secolo decimoterzo pubblicato da Baldassarre Boncompagni»,— Roma: Tipografia delle Scienze Mathematiche e Fisiche, 1857 — латинский текст «Liber Abaci» Леонардо Пизанского Фибоначчи
  • «Папирус Ринда (Ахмета)» — куплен на Луксорском базаре шотландским любителем древностей Александром Генри Риндом в 1858 году, опубликован в 1870 году в Лондоне

См. также

Литература

  1. «Энциклопедический словарь Брокгауза и Ефрона, в 86 томах»,— СПб, 18901907
  2. Башмакова И.Г. «Диофант и диофантовы уравнения»,— М.: Наука, 1972, 68 с.
  3. Иосиф Флавий «Иудейские древности, в 2–х томах»,— М.: Ладомир, 2002, 784+613 сс.
  4. Диоген Лаэртский «О жизни, учениях и изречениях знаменитых философов»,– М.: Мысль, 1986
  5. Депман И.Я. «История арифметики»,– М.: КомКнига, 2006
  6. «Математическая энциклопедия, в 5–ти томах»,— М.: «Советская энциклопедия», 19771984, 1152+1104+1216+1184+1248 стб.